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The modified Thomson problem, which concerns an assembly of N particles mutually interacting through a
Coulombic potential and subject to a Coulombic-harmonic confinement, is introduced. For sufficiently strong
confinement strengths M, properties of its solutions �such as the energy and the particle positions at the
minimum, and the corresponding zero-point vibrational energy� are accurately estimated by expressions de-
pendent on only a few quantities pertaining to the original Thomson problem �such as the energy ETh�N�� and
the reduced confinement strength �= NM

ETh�N� . For N�12, this regime of the perturbed Thomson problem persists
for all non-negative values of �. On the other hand, the perturbed spherical Coulomb crystal regime emerges
for ���crit�N� and larger numbers of particles. For 13�N�22, the transition that delineates these two regimes
is due to the existence of two energy minima, the crystal-like one becoming global for sufficiently weak
confinements. For N�23, the transition involves a catastrophe brought about by the vanishing of one of the
Hessian matrix eigenvalues, the value of �crit�N� being related to the magnitude of radial instability in the
corresponding solution of the original Thomson problem.
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I. INTRODUCTION

The celebrated Thomson problem �1� concerns determin-
ing the optimum arrangement of N equally charged particles
confined to a sphere with a unit radius that interact through
a Coulombic potential, i.e., finding the global minimum
ETh�ETh�N� of

VTh�N� = �
i�j=1

N

rij
−1 �1�

with respect to �r�i���r�i�N��, subject to the constraint of

∀i ri = 1. �2�

Although no general solution of the Thomson problem is
known at present, significant inroads into understanding of
the large-N asymptotics of ETh �and also of analogous ex-
pressions arising from other power-law potentials� have been
made �2,3�. Energy minima that are believed to be global
have been published for all N�400 and also for some larger
numbers of particles �4�.

The significance of the Thomson problem stems from not
only its mathematical appeal but also its relevance to various
physical systems. In particular, its solutions are employed in
the construction of an accurate model of spherical Coulomb
crystals �5�. However, the two-dimensional nature of the Th-
omson problem renders its use inappropriate in instances
where radial motions are important, e.g., in estimation of the
zero-point vibrational energies of particles interacting with
spherically symmetrical external potentials.

In this paper, we introduce a modified Thomson problem
that offers a connection between its original counterpart and
the concept of a spherical Coulomb crystal. Solutions of this
problem are well-defined global minima on 3N-dimensional
potential-energy hypersurfaces that are associated with
positive-semidefinite Hessians. As such, they are ideally
suited as building blocks from which more complicated sys-
tems can be readily assembled.

II. MODIFIED THOMSON PROBLEM

A spherical Coulomb crystal constitutes an equilibrium
configuration of N particles interacting through the potential
�5–8�

VSCC�N� =
2

3 �
i�j=1

N

rij
−1 +

N

3 �
i=1

N

ri
2. �3�

Such assemblies of particles are encountered in a surpris-
ingly wide array of physical problems �9–11�.

In order to devise a mathematical model that allows for a
continuous interpolation between the Thomson problem and
spherical Coulomb crystal limits, one has to augment VTh�N�
with a term that assures asymptotic confinement to the sur-
face of a unit sphere and reduces to a �scaled� harmonic
potential for large and vanishing confinement strengths, re-
spectively. This objective is accomplished by considering a
spherical Coulomb crystal with N+M particles and then par-
titioning the potential energy VSCC�N+M� into the contribu-
tion due to interactions among M particles and the remainder
2
3 V�N ,M�+ N

3 �i=1
N ri

2. At the limit of the M particles confined
to the origin of the coordinate system, V�N ,M� becomes

VMTh�N,M� = �
i�j=1

N

rij
−1 + M �

i=1

N 	ri
−1 +

1

2
ri

2
 . �4�

It can be easily shown �see Eqs. �8� and �17� in Secs. II A
and II B of this paper� that VMTh�N ,M� indeed conforms to
the aforementioned limits.

Potential-energy expression �4� defines the modified
Thomson problem that differs from its original counter-
part by the addition of the Coulombic-harmonic confine-
ment term with M acting as the confinement strength.
Its solution corresponds to finding the global minimum
EMTh�EMTh�N ,M� of VMTh�N ,M� with respect to
�r�i���r�i�N ,M��.
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A. Large-M limit and the upper bound to EMTh(N ,M)

At the limit of M→�, the Coulombic-harmonic confine-
ment term constraints the particles to the surface of a unit
sphere, which implies vanishing relaxation of the particle
positions from those pertaining to the original Thomson
problem. Consequently, since any configuration of particles
possesses potential energy greater or equal to that corre-
sponding to the global minimum, setting

∀i ri = R �5�

affords an upper bound ẼMTh�N ,M� to EMTh�N ,M� that is
asymptotically exact. Inserting Eq. �5� into Eq. �4� produces

EMTh�N,M� � ẼMTh�N,M�

= min
R

	ETh + NM

R
+

NM

2
R2


=
3

2
ETh �1/3�1 + ��2/3, �6�

where

� � ��N,M� =
NM

ETh
�7�

is the reduced confinement strength. The respective mini-
mum is attained at

R � R�N,M� = �−1/3�1 + ��1/3. �8�

For large M, ẼMTh�N ,M� tends to �1+ 3
2��ETh, which, as ex-

pected, equals the sum of ETh and 3
2NM, the latter term being

simply the confinement energy of N particles located at the
surface of a unit sphere.

Inspection of the data produced by extensive energy mini-
mizations �commencing for each N with the solution of the
original Thomson problem and involving a series of qua-
dratic searches with exact Hessian diagonalizations and in-
versions for gradually decreasing values of M� reveals that
the bound given by Eq. �6� is remarkably tight �see Fig. 1�.
The energy difference �EMTh��EMTh�N ,M�=EMTh�N ,M�
− ẼMTh�N ,M� arises from the particle-position relaxation, the
displacements possessing both radial �parallel to the vectors
�r�i�� and angular �perpendicular to �r�i�� components. An ac-
curate approximation to �EMTh is readily derived by analyz-
ing the leading term in the Hessian HMTh�N ,M� at the mini-
mum.

The Hessian HMTh�N ,M� is given by the sum of the
pairwise-interaction contribution Hpair�N ,M� and the contri-
bution MHconf�N ,M� due to the confinement term,

HMTh�N,M� = Hpair�N,M� + MHconf�N,M� . �9�

The matrix Hconf�N ,M� has the eigenvalues of �1+2ri
−3 ,

1−ri
−3 ,1−ri

−3�. Thus, for each i, there is a pair of degenerate
eigenvalues that correspond to eigenvectors perpendicular to
�r�i� and a single eigenvalue associated with the parallel ei-
genvector. Application of the similarity transformation that
diagonalizes Hconf�N ,M� to Eq. �9� yields

H̃MTh�N,M� = H̃pair�N,M� + MH̃conf�N,M� , �10�

where the eigenvalues of H̃MTh�N ,M� are the same as those
of HMTh�N ,M�.

Since solving the original Thomson problem implies find-
ing the optimum angular particle positions, the energy gradi-
ent at the point given by constraint �5� possesses only the
radial components. At the M→� limit, the respective block

of H̃MTh�N ,M� is dominated by the MH̃conf�N ,M� diagonal
contribution with the N-tuply degenerated eigenvalues of
M�1+2R−3�. Consequently, by virtue of the quadratic ap-
proximation �according to which the relaxation energy
equals one-half of the product of the transposed energy gra-
dient, the inverse of the energy Hessian, and the energy gra-
dient�,

�EMTh � −
1

2
M−1�1 + 2R−3�−1 �

i=1

N 	 �EMTh

�ri

2

�11�

and

�ri � �ri�N,M� � − M−1�1 + 2R−3�−1 �EMTh

�ri
. �12�

The energy derivatives that enter Eqs. �11� and �12� are given
by

�EMTh

�ri
= −

ETh

N
R−2�i, �13�

where

�i � �i�N� = − 1 +
N

2ETh
�
j�i

N

rij
−1 �14�

measures the deviation of the ith particle contribution to ETh
from its mean value, the interparticle distances �rij� referring
to the original N-particle Thomson problem.

Combining Eqs. �5�, �7�, and �11�–�14� affords
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FIG. 1. The dependence of the relative error of upper bound �6�
on � for N=100.
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�EMTh � −
ETh

2N
R−1�1 + 3��−1 �

i=1

N

�i
2 �15�

and

�ri � R�1 + 3��−1�i. �16�

Accordingly, one expects the plots of �R�EMTh�−1 and R
�ri

vs

� to be straight lines with the slopes of 6N
ETh

��i=1
N �i

2�−1 and
3�i

−1, respectively. Inspection of Figs. 2 and 3 confirms this
theoretical prediction. One should note that the particle-
position relaxation is absent in highly symmetrical cases
�i.e., for N=2, 3, 4, 6, 8, 12, and 24� where all the members
of the set ��i� equal zero.

B. M=0 limit and the transition
to a spherical Coulomb crystal

As revealed by the scaling r�i= � N
M �1/3r�i� that brings Eq. �4�

into

VMTh�N,M� =
3

2
	M

N

1/3

		2

3 �
i�j=1

N

rij�
−1 +

N

3 �
i=1

N

ri�
2 +

2M

3 �
i=1

N

ri�
−1
 ,

�17�

the modified Thomson problem is also a modified spherical
Coulomb crystal problem. In other words, solving the modi-
fied Thomson problem for M =0 is equivalent to finding the
particle positions of the respective spherical Coulomb crys-
tal. This observation implies the existence of two regimes,
namely, that of the large-M perturbed Thomson problem so-
lutions characterized by single “thick-shell” particle configu-
rations and that of the small-M perturbed spherical Coulomb
crystals, which are known to possess multishell structures for
all N�12 �5–8�. The transition between these two regimes
can be due to either a catastrophe involving radial instability
precipitated by a vanishing Hessian eigenvalue or the exis-
tence of two distinct minima, each associated with one re-
gime, that become equienergetic for some value of M.

Indeed, numerical data, such as those displayed in Figs.
1–3, clearly demonstrate the presence of a transition that is
accompanied by sudden departures of the computed �EMTh,
and the most negative and positive radial displacements
��rmin and �rmax� from their estimates provided by Eqs. �15�
and �16�. One should note that the validity of these estimates
throughout the entire perturbed Thomson problem regime
implies insensitivity of the Hessian matrix eigenvalues to the
radial particle-position relaxation and a negligible contribu-
tion of its angular counterpart.

Neglecting the effect of the radial relaxation on the Hes-
sian eigenvalues allows for a simple scaling argument that
yields

Hpair�N,M� = ��1 + ��−1HTh�N� , �18�

where HTh�N� is the Hessian matrix of the original N-
particle Thomson problem. Consequently, the eigen-
values �
i���
i�N ,M�� of HMTh�N ,M� are found to behave

approximately like �
��i

�+M�1+3��
1+� ,

��i
�1+M

1+� ,
��i

�2+M

1+� �, where
��i

�����i
��N��, ��i

�1����i
�1�N��, and ��i

�2����i
�2�N�� are

the respective eigenvalues of the radial and angular blocks of

H̃Th�N� �which is related to HTh�N� through the similarity
transformation mentioned in Sec. II A�. By virtue of the first-
order perturbation theory, ��i

�� equal the diagonal elements of

the radial block of H̃Th�N�.
The above considerations provide a simple estimate of

�crit��crit�N� at which the transition of the first type occurs,
i.e., the value of � at which the smallest eigenvalue of the

radial block of H̃MTh�N ,M� vanishes, obliterating the radial
stability of the thick-shell particle configuration that persists
throughout the perturbed Thomson problem regime. Let

� � ��N� = min
i
	1 +

N�i
�

ETh

 . �19�

Setting mini
��i

�+M�1+3��
1+� to zero readily yields �crit=−� /3. The

dependence of � on N is displayed in Fig. 4. The values of �
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FIG. 2. The dependence of �R�EMTh�−1 on � for N=100. The
thin straight line has the theoretical slope of 2164.2.

0.0 2.0 4.0 6.0 8.0 10.0
0.0

5000.0

10000.0

15000.0

20000.0

R/∆rmax

- R/∆rmin

R
/∆
r

ξ

FIG. 3. The dependences of − R
�rmin

and R
�rmax

on � for N=100.
The thin straight lines have the theoretical slopes of 2074.9 and
1775.3, respectively.
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correlate well with N1/2, although considerable scatter is
present, especially for smaller values of N. They are found to
be positive for all N�23, implying that the solutions of the
modified Thomson problem with fewer than 23 particles un-
dergo transitions of the second type that do not involve ca-
tastrophe due to radial instability.

C. Zero-point vibrational energy

Being global minima, solutions of the modified Thomson
problem are associated with positive-semidefinite Hessians
and thus well-defined zero-point vibrational energies,

MTh�N,M� =
1

2 �
i=1

3N


i
1/2, �20�

knowledge of which allows for estimation of vibrational
properties of complex systems that can be approximated by
assemblies of particle configurations individually minimizing
VMTh�N ,M�. Upon neglect of the particle-position relaxation
discussed in Sec. II B of this paper, MTh�N ,M� can be
readily calculated by replacing the exact values of �
i� with

those of the set �
��i

�+M�1+3��
1+� ,

��i
�1+M

1+� ,
��i

�2+M

1+� �, which yields

MTh�N,M� =
1

2
	 �

1 + �

1/2

�
i=1

N ��i
� +

ETh

N
�1 + 3���1/2

+ 	�i
�1 +

ETh

N

1/2

+ 	�i
�2 +

ETh

N

1/2�

= N 	3M

2

1/2

F��� . �21�

The function F����F�N ,�� that enters the above equation
possesses the large-� asymptotics of

F��� =� �

2 + 2�
	1 +

A
�3

�−1/2 +
B

6
�−1 + ¯
 , �22�

where

A � A�N� =
1

N
�
i=1

N �	1 +
N

ETh
�i

�1
1/2
+ 	1 +

N

ETh
�i

�2
1/2�
�23�

and

B � B�N� = 1 +
1

ETh
�
i=1

N

�i
� . �24�

Computation of B involves evaluating the trace of the radial
block of HTh�N�. After some straightforward algebra, one
obtains

B =
5

2
−

2

ETh
�

i�j=1

N

rij
−3, �25�

where the interparticle distances �rij� refer to the original
N-particle Thomson problem. Upon employing the results of
Kuijlaars and Saff �2� for the sum of reciprocal cubes of the
interparticle distances, the leading asymptotics of B are
readily recovered as

lim
N→�

B

N1/2 = − �32�3�−1/2 31/4 �	3

2
,0
��	3

2
,
2

3

 − �	3

2
,
1

3

�

� − 0.399 256, �26�

where ��s ,a� is the generalized Riemann zeta function. The
plot of B vs N1/2 �Fig. 5� is in a remarkable agreement with
this result, the slope closely matching the theoretical predic-
tion and the deviation of the intercept from 5

2 being due to
higher-order terms in the large-N asymptotics of the pertinent
sums. On the other hand, although A is found to scale like

0.0 5.0 10.0 15.0 20.0
-8.0

-6.0

-4.0

-2.0

0.0

2.0

η

N1/2

FIG. 4. The dependence of the minimum eigenvalue � on N1/2

for 2�N�400. The straight line is given by the least-squares fit of
� = 2.355�7 − 0.4978�5 N1/2.
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FIG. 5. The dependence of the parameter B on N1/2 for
2�N�400. The straight line is given by the least-squares fit of
B = 2.5423�4 − 0.400 09�2 N1/2.
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N1/4 �Fig. 6�, no closed-form expression analogous to Eq.
�26� can be easily obtained.

In the highly symmetrical cases that are devoid of the
particle-position relaxation, Eq. �21� is exact. In particular,

F�2,�� =
2 + �3 + 3� + �1 + 3�

2�6 + 6�
, �27�

F�3,�� =
1 + �3 + 3� + �10 + 12� + 4�6 + 15�

3�6 + 6�
, �28�

and

F�4,�� =
2�3 + 2�3 + 3� + 3�10 + 12� + 4�6 + 14�

8�6 + 6�
. �29�

Interestingly, upon appropriate scaling and shifting, the plots
of F�2,��, F�3,��, and F�4,�� match very closely. This ob-
servation suggests the existence of a universal �although ap-
proximate� scaling of the form

F��� =
1
�2

+ 	Fmax −
1
�2


����� − �max�� , �30�

where F��� is the exact �i.e., including the particle-position
relaxation� function calculated from MTh�N ,M� according to
Eq. �21�, Fmax�Fmax�N� is the value of F��� at the maximum
of �max��max�N�, and

� � ��N� = 3A−2��2Fmax − 1�2 �31�

is the scaling factor that yields the large-t asymptotics of

��t� = t−1/2 + Ct−1 + ¯ . �32�

Examination of over 47 000 points computed for 2�N
�400 and various values of M that lie within the perturbed
Thomson problem regime confirms the approximate validity
of Eq. �30� �Fig. 7�. When the simplest closed-form universal
function

��t� =
1 + �3

2

2 + �1 + 2�2 + �3�t − �3 + 2�2 + �3�t
�3 + 2�2 + �3�t

,

�33�

derived from F�2,�� and scaling �30�, is employed, the
rms errors in the estimates of the exact F��� amount to
1.4	10−3 �for t�0�, 3.9	10−4 �for t�0�, and 5.3	10−4

�for all values of t�. The corresponding maximum errors
equal 8.2	10−3 �for t�0� and 6.2	10−4 �for t�0� �note
that the values of F�t� are close to unity�. This excellent
accuracy of the predictions afforded by scaling expressions
�30� and �33� is somewhat surprising in light of the rather
large scatter in the values of C �Fig. 8� computed according
to the equation

C � C�N� = �2A2�−1�B − 3���2Fmax − 1� �34�

that follows from Eq. �30� and asymptotics �22� and �32�.
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FIG. 6. The dependence of the parameter A on N1/4 for
2�N�400. The straight line is given by the least-squares fit of
A = 0.174�3 + 0.7925�8 N1/4.

-0.3 0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2
0.42

0.52

0.62

0.72

0.82

0.92

1.02

Φ

t

FIG. 7. The approximate universality of the dependence of
��t�= �F���− 1
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� on t =���−�max�. The solid line corre-

sponds to the function ��t� given by Eq. �33�.
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FIG. 8. The dependence of the parameter C on N for 2�N
�400.
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For sufficiently large values of N, the scaling parameters
�, �max, and Fmax follow simple power laws with �−1

and �max scaling like N1/2, and Fmax tending to a constant
�Figs. 9–11�, which implies universal dependence of
N−1M−1/2MTh�N ,M� on MN−3/2 �compare Eqs. �7�, �21�, and
�30�, together with the large-N asymptotics of
N−2ETh→1 /2�. Interestingly, since �crit also scales asymp-
totically like N1/2, one expects the transition between the
perturbed Thomson problem and the perturbed spherical
Coulomb crystal regimes to occur at an N-independent tcrit as
N→�. Inspection of Fig. 12 confirms this prediction.

III. CONCLUSIONS

The modified Thomson problem, which concerns an
assembly of N particles mutually interacting through a

Coulombic potential and subject to a Coulombic-harmonic
confinement, provides a formalism for a continuous interpo-
lation between the original Thomson problem and that of a
spherical Coulomb crystal. For sufficiently strong confine-
ments, its solutions possess properties that are readily esti-
mated with approximate �yet accurate� expressions involving
only the reduced confinement strength � and a few quantities
pertaining to the original Thomson problem. In particular, a
tight upper bound to the energy is found to depend only on
its Thomson problem counterpart ETh and �, the next-order
correction requiring just one additional parameter. Similarly,
an accurate first-order correction to the positions of particles
at the global energy minimum is entirely determined by �
and their energy contributions to ETh. Even more interest-
ingly, the corresponding zero-point vibrational energy fol-
lows very closely an approximate scaling law that employs
three N-dependent parameters ��N�, �max�N�, and Fmax�N�.
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1
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FIG. 9. The dependence of the reciprocal scaling factor �−1 on
N1/2 for 2�N�400. The straight line is given by the least-squares
fit of �−1 = 0.91�1 + 0.5635�8 N1/2.
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FIG. 10. The dependence of the maximum position �max on N1/2

for 2�N�400. The straight line is given by the least-squares fit of
�max = −0.653�4 + 0.2213�3 N1/2.
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FIG. 11. The dependence of the maximum magnitude Fmax on N
for 2�N�400. The solid line is given by the least-squares fit of
Fmax = �0.57�3 + 1.16�8 N� / �1 + 1.01�7 N�.
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FIG. 12. The dependence of the critical parameter tcrit on N for
2�N�400.

JERZY CIOSLOWSKI PHYSICAL REVIEW E 79, 046405 �2009�

046405-6



For N�12, this regime of the perturbed Thomsonproblem
persists for all non-negative values of �. On the other hand,
the perturbed spherical Coulomb crystal regime emerges for
���crit�N� and larger numbers of particles. For 13�N�22,
the transition that delineates these two regimes is due to the
existence of two energy minima, the crystal-like one becom-
ing global for sufficiently weak confinements. For N�23,
the transition involves a catastrophe brought about by the
vanishing of one of the Hessian matrix eigenvalues, the
value of �crit�N� being related to the magnitude of radial
instability in the corresponding solution of the original
Thomson problem. In this case, the thick-shell perturbed
Thomson problem energy minimum simply ceases to exist
for ���crit�N�.

The parameters �crit�N�, ��N�, �max�N�, and Fmax�N�,
which depend solely on the particle-position vectors that
solve the original N-particle Thomson problem, follow
simple power laws at the limit of N→�. At that limit,
t=N−3/2M �where M is the confinement strength� becomes
the quantity controlling the vibrational properties, the transi-
tion between the two regimes occurring at tcrit�−0.1.

Thanks to its capability of interrelating the particles on
the sphere and the spherical Coulomb crystal models, the
modified Thomson problem affords particle configurations
that are bound to find numerous applications as building
blocks in approximate theories dealing with electrostatically
interacting particles subject to confining external potentials.
Further work along these lines is currently in progress.
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